
An Efficient Generation of Potential High Utility
Itemsets from Transactional Databases

Velpula Koteswara Rao, Ch. Satyananda Reddy

Department of CS & SE, Andhra University

Visakhapatnam, Andhra Pradesh, India.

Abstract: - The importance of Utility Mining is to identify the
itemsets with maximum utilities, by considering profit,
quantity, cost or other user preferences. An Efficient discovery
of high utility itemsets from transactional databases refers to
finding the itemsets with high utility like profits. High utility
itemsets mining extends frequent pattern mining and weighted
frequent mining to discover itemsets in a transaction database
with utility values above a given threshold. We proposed an
efficient algorithm namely UP-Growth+ (Utility Pattern
Growth+), which improves the mining performance in terms
of time and space complexities. The information of high utility
itemsets is maintained in tree -based data structure named as
UP-Tree (Utility Pattern Tree).The performance of both UP-
Growth and UP-Growth+ is compared with the state-of- the-
art algorithms on different types of datasets. UP-Growth+ is
not only reduces the number of candidates effectively but also
better than other algorithms substantially in terms of
execution time and space requirement, especially when the
database contains lots of long transactions.

Keyword:- Data mining, Frequent Pattern Mining, Weighted
Frequent Pattern Mining, Utility Mining

1 INTRODUCTION
Data mining (sometimes called data or knowledge
discovery) is the process of analyzing data from different
perspectives and summarizing it into useful information -
information that can be used to increase revenue, cuts costs,
or both. Discovering useful patterns hidden in a database
plays an essential role in several data mining tasks, such as
frequent pattern mining [1][12][13][14], weighted frequent
pattern mining [4], and high utility pattern mining [5]. The
goal of frequent itemset mining is to identify all frequent
itemsets and it collects the set of items that occur frequently
together. Therefore, frequent itemset mining cannot satisfy
the needs of customers, who all are wanted the itemsets
with high profits. To solve this problem weighted
association rule mining [4] was proposed. In this concept,
the quantities of items are not taken yet. In view of this,
utility mining emerges as an important topic in data mining
for mining the itemsets with high utility like profits. The
basic meaning of utility is the interestedness/ importance/
profitability of items to the users. The utility of an itemset
is defined as the product of its external utility and internal
utility, where external utility is the importance of different
items, and internal utility is the importance of the items in
the transaction. If the utility of an itemset is no less than a
user specified minimum utility threshold then it is called

high utility itemset. Otherwise, the itemset is called a low
utility itemset.
However, mining high utility itemsets from the databases is
not an easy task since the downward closure property [1]
used in frequent itemset mining cannot be applied here. In
other words, pruning search space for high utility itemset
mining is difficult because a superset of a low utility
itemset may be a high utility itemset. To solve this problem
by enumerate all itemsets from the databases by the
principle of exhaustion. Obviously, this approach will
encounter the large search space problem, especially when
databases contains lots of long transactions or a low
threshold is set. Hence, how to effectively prune the search
space and efficiently capture all high utility itemsets with
no miss is a big challenge in utility mining.
Existing studies [4] [5] [6] [10] [11] applied overestimated
methods to facilitate the mining performance of utility
mining. These methods give potential high utility itemsets
first, and then an additional database scan is performed for
identifying their utilities. However, the existing methods
often generate a huge set of potential high utility itemsets
and the mining performance is degraded consequently. The
situation may become worse when the database contains
many long transactions or low threshold is set. The huge
number of potential high utility itemsets forms a
challenging problem to the mining performance since the
higher processing cost and execution time is incurred with
more potential high utility itemsets are generated. To
address this issue, we proposed an efficient algorithm
called UP-Growth+ algorithm.
The rest of this paper is organized as follows. In section 2,
we introduce the background and related work for high
utility itemset mining. In section 3, the proposed algorithm
and data structure are described in details. Experiment
results are shown in section 4 and the conclusions are given
in section 5

2 BACKGROUND
In this section, we first include some definitions and
describe the problem of utility mining, and then introduce
related work in utility mining.
2.1 Basic Definitions
A transaction database D= {T1, T2, .Tn} and each
transaction Td (1 ≤d ≤n) has a unique identifier d, called
TID. Each item ip in transaction Td is associated with a
quantity q (ip,Td), that is, the purchased quantity of ip in Td.
A set of items I= {i1, i2. . . im} each item ip (1 ≤p≤ m) has a
unit profit pr (ip).

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8055

Definition 1. The utility of an item is the product of its
internal utility and external utility. The utility of the item

in a transaction is denoted as u (and defined as

u(=pr (ip) * q (ip,Td).

For example u ({P}, T2) =2*1=2
Definition 2. The utility of an itemset X in transaction

is the sum of the utilities of all the items in X in T, it is
denoted as u(X, and defined as

u(X, = ,()
p di X X T p du i T∈ ∧ ⊆

For example u ({PQ}, T2) = u ({P}, T2) + u({Q}, T2)

=2+6=8

Definition 3. The utility of an itemset X in database D is
the sum of the utilities of X in all transactions containing X.
It is denoted as u(X), and defined as

u(X)= (,)
d dX T T D du X T⊆ ∧ ∈

For example

u({V})=u({V},T2)+u({V},T3)+u({V},T4)=15+3+6=24

TABLE 1

 An Example Transactional Database

TID Transaction
T1 (P,3) (Q,1) (R,1) (S,3)
T2 (P,2) (Q,2) (R,3) (T,2) (V,5)
T3 (P,2) (Q,4) (V,1) (W,2)
T4 (Q,5) (R,2) (T,6) (V,2)
T5 (R,3) (S,7) (U,5) (W,3)
T6 (P,1) (Q,1) (S,1) (W,2)

TABLE 2

Profit Table

Item P Q R S T U V W
Profit 1 3 2 1 2 1 3 1

Definition 4. The utility of transaction is the sum of the

utilities of all the items in the transaction. It is denoted as
TU() and defined as

() (,)
p d

d p d
i T

TU T U i T
∈

= 

Definition 5. The transaction weighted utility of an itemset
X is the sum of the transaction utilities of all the
transactions containing the itemset X in the database. It is
denoted as TWU(X) and defined as

() ()
d d

d
X T T D

TWU X T T
⊆ ∧ ∈

= ∪

TABLE 3

 Transaction Utilities Table
Transaction Transaction

Utility
TU(T1) 11
TU(T2) 33
TU(T3) 19
TU(T4) 37
TU(T5) 21
TU(T6) 7

TABLE 4

Transaction Weighted Utilities Table (TWU)

Item TWU

P 70

Q 107

R 102

S 39

T 70

U 21

V 89

W 47

2.2 Related Work
Extensive studies have been proposed for mining frequent
patterns [1], [2]. Among the issues of frequent pattern
mining, the most famous are association rule mining [1]
and sequential pattern mining [2]].Association rule mining
is considered to be an interesting research area and studied
widely [1] [2]by many researchers. In the recent years,
some relevant methods have been proposed for mining high
utility itemsets from transaction databases.
In 1994, Agrawal .R et al. [1] proposed Apriori algorithm
by exploit “downward closure property”, which is the
pioneer for efficiently mining association rules from large
databases. This algorithm generated and tested candidate
itemsets iteratively. This may scan database multiple times,
so the computational cost is high. This problem is
overcome by FP-Growth algorithm is proposed by Han .J et
al. [3].
In the frequent itemset mining, the importance of items to
users is not considered. Later different algorithms proposed
like Two-Phase [5][7], IIDS [6] and IHUP [2].In 2006, H.
Yao et al. proposed UMining [8] algorithm to find almost
all the high utility itemsets from an original database. But it
suffers to capture a complete set of high utility itemsets.
Later, In 2010 V. S. Tseng et al. [10] proposed UP-Growth
algorithm to rectify the problems of FP-Growth.

3 PROPOSED METHOD
The framework of the proposed method consists of three
steps: 1) Construction of a global UP-Tree [9][11] 2)
generate PHUIs from global UP-Tree and local UP-Trees

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8056

by UP-Growth+ 3) identify actual high utility itemsets
from the set of PHUIs.

3.1. Construction of global UP-Tree
In an UP-Tree, each node G consists of G.name, G.count,
G.nu, G.parent, G.hlink and a set of child nodes. G.name is
the node’s item name. G.count is the node’s support count.
G.nu is the node’s node utility, i.e., overestimated utility of
the node. G.parent records the parent node of G. G.hlink is
a node link which points to a node whose item name is the
same as G.name.
A header table is maintained to represents the traversal of
UP-Tree. Header table contains three fields such as item
name, an overestimated utility, and a link. The link points to
the last occurrence of the node which has the same item as
the entry in the UP-Tree.

3.1.1 Constructing a Global UP-Tree by Applying DGU
and DGN

The construction of a global UP-Tree is performed with two
database scans. In the first scan, each transaction’s TU is
computed for each transaction; at the same time, TWU of
each item is computed. An item ip is called a unpromising
item if TWU (ip) less than min_util.Otherwise it is called
promising item. We can get promising and unpromising
items. In the second scan transactions are inserted one after
the other into a UP-Tree. When a transaction is retrieved,
the unpromising items should be removed from the
transaction and their utilities should also be eliminated from
the transaction’s TU. New TU after removing unpromising
items is called the reorganized transaction utility (RTU).Re
organized transaction utility of a transaction Tn is indicated
with RTU (Tn). The transactions are reorganized by
discarding the unpromising items and the remaining items
are arranged in descending order of their TWU’s.
DGU can be performed repeatedly till unpromising items
are not contained in all reorganized transactions. This entire
process comes under the DGU strategy. During the DGN
strategy the utilities of descendent nodes from their node
utilities in global UP-Tree.
An example is given to explain how to apply the two
strategies during the construction of a global UP-tree.
Consider the transactional database in Table 1 and profit
table in Table 2.suppose min_util is 50.In the first scan
TU’s of transactions are represented in Table 3 and TWU’s
of items are represented in Table 4.Five promising items,
i.e., {P}:70, {Q}:107, {R}:102, {T}:70, {V}:89 are sorted
in the header table by descending order of TWU, that is
{Q}, {R}, {V}, {T} and {P}.The reorganized transaction
and their RTUs are shown in Table 5. After a transaction
has been reorganized, it is inserted into the global UP-Tree.
When T1

’={(Q,1) (R,1) (P,3)} is inserted, the first node GQ
is created with GQ.item={Q} and GQ.count=1 GQ.nu is
increased by RTU(T1’) minus the utilities of the rest items
that are behind {Q} in T1’ that is, GQ.nu=RTU(T1

’)-
(u({R},T1

’)+u({P},T1
’)=8-(2+3)=3.The second node GR is

created with GR.nu=RTU (T1
’)-u ({P}, T1’) =8-3=5. The

third node GP is created with GP.nu=RTU (T1
’) =8.The

same process is repeated for all the remaining reorganized
transactions, results are shown in Table 6.
 TABLE 5

Reorganized Transactions and their utilities

TID Reorganized
Transaction

RTU

T1 (Q,1) (R,1) (P,3) 8
T2 (Q,2) (R,3) (V,5)

(T,2) (P,2)
33

T3 (Q,4) (V,1) (P,2) 17
T4 (Q,5) (R,2) (V,2)

(T,6)
37

T5 (R,3) 6
T6 (Q,1) (P,1) 4

TABLE 6

Node utilities of every item in a transaction

Transaction Node Utilities
T1 GQ.nu=3 GR.nu=5 GP.nu=8
T2 GQ.nu=6 GR.nu=12 GV.nu=27

GT.nu=31 GP.nu=33
T3 GQ.nu=12 GV.nu=15 GP.nu=17
T4 GQ.nu=15 GR.nu=19 GV.nu=25

GT.nu=37
T5 GR.nu=6
T6 GQ.nu=3 GP.nu=4

After inserting all reorganized transactions by the same
way, the global UP-Tree is shown in Fig.1

{Root}

 {Q}:39,5 {R}:6,1

 {V}:15,1 {R}:36,3 {P}:4,1

{P}:17,1 {P}:8,1 {V}:52,2

 {T}:68,2

 {P}:33,1

Fig. 1.Construction of global UP-Tree by DGU and
DGN

3.2 Generate PHUI’s and its Utilities from global UP-
Tree
After constructing a global UP-Tree, a basic method for
generating PHUIs is to mine UP-Tree by FP-Growth [3].
However too many candidates will be generated. To solve
this problem by UP-Growth. UP-Growth algorithm
involves two more strategies into the framework of FP-
Growth. UP-Growth achieves better performance than FP-
Growth by using DLU and DLN to decrease overestimated

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8057

utilities of itemsets. we proposed an improved method,
named UP-Growth+, for dropping overestimated utilities
more in fact.
In UP-Growth, minimum item utility table is used to reduce
the overestimated utilities. In UP-Growth+, minimal node
utilities in each path are used to build the estimated pruning
values closer to real utility values of the pruned items in
database. Model diagram for UP-Growth+ is shown in Fig.3
Minimal node utility for each node can be acquired during
the construction of a global UP-Tree. First, we add an
element, namely G.mnu, into each node of UP-Tree. G.mnu
is minimal node utility of G. When G is traced, G.mnu
keeps way of the minimal value of G.name’s utility in
different transactions. If G.mnu is larger than
u(G.name,Tcurrent), G.mnu is set to u(G.name,Tcurrent).
Fig. 2 shows the global UP-Tree with G.mnu in each node.
In Fig. 2, G.mnu is the last number in each node.

{Root}

 {Q}:39,5,3 {R}:6,1

 {V}:15,1,3 {R}:36,3,2 {P}:4,1,1

{P}:17,1,2 {P}:8,1,3 {V}:52,2,6

 {T}:68,2,4

 {P}:33,1,2

Fig. 2. An UP-Tree with minimal node utilities.

 UP-Growth+ introduces two more strategies, named DNU
and DNN With minimum node utilities in each path,
minimal node utilities in each path are used to build the
estimated pruning values closer to real utility values of the
pruned items in database. In the mining process, when a
path is retrieved, minimal node utility of each node in the
path is also retrieved.

Fig 3: Model Diagram for UP-Growth+

3.2.1 Methodology for UP-Growth+ Algorithm:

1. Calculate TU, TWU
2. Discard unpromising items and their path utilities
3. Reorganize the transactions
4. Construct UP-Tree with root R
5. Insert Transactions into tree
6. For every item in path maintain minimum node

utility
7. Generate conditional pattern bases
8. Discard local unpromising items and their

utilities(DNU & DNN)
9. Construct conditional pattern tree
10. Obtain PHUIs
11. Obtain high utility itemsets

DNU:
Assume that there is a path in {B}-CPB and UI {B}-CPB is the
set of unpromising items in {B}-CPB. The path utility of p
in {B}-CPB, i.e., pu (p, {B}-CPB) is calculated as follows

pu(p, {B}-CPB) =p. {B}.nu - ∑x UI {B}-CPB min_node_util(x)*

p.count

Where min_node_util(x) is the minimum node utility of x
and p.count is the support count of path p.

Next, we use an example for describing the processes of
DNU in UP-Growth+. Consider the UP-Tree in Fig. 2 and
assume that min_util is set to 50. After applying DNU step
the reorganized paths and its utilities are shown in Table 7,
and their path utilities of items are listed in Table 8

 TABLE 7
Path’s Utilities of {P}-CPB

Local Paths to {P}-CPB Path’s Utility

<Q(3),R(2)> 8
<Q(3),R(2),V(6),T(4)> 33

<Q(3),V(3)> 17
<Q(3)> 4

TABLE 8

 Path Utilities of items in {P}-CPB

Item Path
Utility

V 50
T 33
R 41
Q 62

From Table 8 the unpromising items are T and R because
their utilities are less than 50.
After dropping the unpromising items the reorganized
transactions and their reorganized path utilities are shown
in Table 9.

Data set
Select

Transactional
Database

DGU

DGN

DNU DNN

Potential High
Utility Itemsets

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8058

TABLE 9
Reorganized Paths Utilities of {P}-CPB

Local Paths to {P}-CPB Path’s Utility

<Q(3)> 6
<Q(3),V(6)> 27
<Q(3),V(3)> 17

<Q(3)> 4

DNN:Decreasing local node utilities for the nodes of local
UP-Tree by estimated utilities of descendant nodes. It is
similar to DGN step but it uses minimum node utilities of
descendant nodes instead of actual utilities of descendent
nodes.

TABLE 10
Node Utilities of every item in {P}-CPB

Node Utilities of {P}-CPB
GQ.nu=6
GQ.nu=21 GV.nu=27
GQ.nu=14 GV.nu=17
GQ.nu=4

In our example PHUIs that are obtained with {P}-CPB
when min_util=50 are obtained, i.e., {P}: 62.By applying
the four strategies, the generation of PHUIs can be more
efficient since the fewer PHUIs are generated, the less time
is spent.

4 EXPERIMENTAL EVALUATIONS:
The implementation of the proposed system is evaluated
and shows that the proposed system better the existing
systems. The algorithm is implemented in Java language.
Both real and synthetic data sets are used in the
experiments. The synthetic data set was generated by
writing a program in Java language while the real data sets
were taken from Internet sources the features of real
datasets are as presented in Table 11.

TABLE 11
Features of Real Data Sets

Dataset │D│ T │I│ Type
Accidents 340183 33.8 468 Dense
Chain-store 112949 7.2 46086 Sparse
Chess 3196 37.0 75 Dense
Foodmart 4141 4.4 1559 Sparse

To show the performance of the proposed algorithm, we
compared several compared methods and give them new
notations as follows: IHUPTWU algorithm, which is
proposed in [5] and composed of IHUPTWU-Tree and FP-
Growth, is denoted as IHUPT&FPG. Similarly UPT&FPG,
UPT&UPG (UP-Tree and UP-Growth), UPT&UPG+ (UP-
Tree and UP-Growth+).The methods implemented in this
paper are compared with previous methods. The results
existing in the following figures expose that the
performance of the methods of this paper show better
performance when compared to that of previous ones.

Fig. 3. Performance comparison with respect to dense

data set (Chess)

As can be seen in Figure 3, it is clear that the horizontal
axis represents minimum utility (%) while the vertical axis
represents the runtime. Out of all the methods the UPT &
UPG+ method has higher performance.

Fig. 4. Performance comparison on sparse data set

(Foodmart)
As can be seen in Figure 4, it is clear that the horizontal
axis represents minimum utility (%) while the vertical axis
represents the runtime. Out of all the methods the UPT &
UPG+ method has higher performance.

Fig. 5. Performance comparison with Average

transaction length

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8059

As can be seen in Figure 5, it is clear that the horizontal axis
represents average transaction length while the vertical axis
represents the runtime. Out of all the methods the UPT &
UPG+ method has higher performance.

Fig.6. Maximum number of purchases items (Accidents

dataset)

As can be seen in Figure 6, it is clear that the horizontal axis
represents maximum number of purchases items while the
vertical axis represents the runtime. Out of all the methods
the UPT & UPG+ method has higher performance.
Finally, high utility itemsets are efficiently identified from
the set of PHUIs which is much smaller than HTWUIs
generated by IHUP. By the reasons mentioned above, the
proposed algorithms UP-Growth and UP-Growth+ achieve
better performance than IHUP algorithm.

5 CONCLUSIONS
Efficient discovery of high utility itemsets from
transactional databases refers to finding the itemsets with
high utility like profits. High utility itemsets mining extends
frequent pattern mining and weighted frequent mining to
discover itemsets in transactional databases with utility
values above a given threshold. In this paper, we have
proposed UP-Growth+ for mining high utility itemsets from
transactional databases. For maintaining the information of
high utility itemsets a data structure named UP-Tree was
proposed. With only two database scans, from UP-Tree
Potential high utility itemsets can be efficiently generated
and also their utilities are calculated. To perform a thorough
performance evaluation both real and synthetic datasets
were used in the experiments. Results show that the
strategies considerably improved performance by reducing
both the search space and the execution time.

REFERENCES
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules,” Proc. 20th Int’l Conf. Very Large Data Bases (VLDB), pp.
487-499, 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th
Int’l Conf. Data Eng., pp. 3-14, Mar. 1995.

[3] Jiawei. Han, Jian. Pei, and Y. Yin.: Mining frequent patterns without
candidate generation. In Proc. of the ACM-SIGMOD Int'l Conf. on
Management of Data, pp. 1-12, 2000.

[4] F.Tao, F.Murtagh, and M. Farid, “Weighted Association Rule
Mining Using Weighted Support and Significance Framework,”
Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining
(KDD ’03), pp. 661-666, 2003.

[5] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong and Y.-K. Lee, “Efficient
Tree Structures for High Utility Pattern Mining in Incremental
Databases,” IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12,
pp. 1708-1721, Dec. 2009.

[6] Y. C. Li, J. S. Yeh, and C. C. Chang.: Isolated items discarding
strategy for discovering high utility itemsets. In Data & Knowledge
Engineering, Vol. 64, Issue 1, pp. 198-217, Jan., 2008.

[7] Y. Liu, W. Liao, and A. Choudhary.: A fast high utility itemsets
mining algorithm. In Proc. of the Utility-Based Data Mining
Workshop, 2005.

[8] H. Yao, H. J. Hamilton, and L. Geng.: A unified framework for
utility-based measures for mining itemsets. In Proc. of ACM
SIGKDD 2nd Workshop on Utility-Based Data Mining, pp. 28-37,
USA, Aug., 2006.

[9] R. Chan, Q. Yang, and Y. Shen, “Mining High Utility
Itemsets,”Proc. IEEE Third Int’l Conf. Data Mining, pp. 19-26, Nov.
2003.

[10] Vincent. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu.: UP-Growth:
An Efficient Algorithm for High Utility Itemset Mining. In Proc. of
ACM-KDD, Washington, DC, USA, pp. 253-262, July 25–28, 2010.

[11] A. Erwin, R.P. Gopalan, and N.R. Achuthan, “Efficient Mining of
High Utility Itemsets from Large Data Sets,” Proc. 12th Pacific-Asia
Conf. Advances in Knowledge Discovery and Data Mining
(PAKDD), pp.554-561,2008

[12] Efficient Algorithms for Mining High Utility Itemsets from
Transactional Databases by Vincent S. Tseng, Bai-En Shie, Cheng-
Wei Wu, and Philip S. Yu, Fellow, IEEE

[13] S.J. Yen and Y.S. Lee, “Mining High Utility Quantitative
Association Rules.” Proc. Ninth Int‟l Conf. Data Warehousing and
Knowledge Discovery (DWK), pp. 283-292, Sept. 2007.

[14] U. Yun, “An Efficient Mining of Weighted Frequent Patterns with
Length Decreasing Support Constraints,” Knowledge-Based
Systems, vol. 21, no. 8, pp. 741-752, Dec 2008.

Velpula Koteswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8055-8060

www.ijcsit.com 8060

